eBay Product Scraping, Manta Data Scraping, Website Screen Scraping, Website Screen Scraping, Website Scraper, Scraping Data from Websites, Website Information Scraping, Web Scraping Services, Scraping Data from Websites, Website Information Scraping

Saturday, 31 December 2016

What is Data Mining? Why Data Mining is Important?

What is Data Mining? Why Data Mining is Important?

Searching, Collecting, Filtering and Analyzing of data define as data mining. The large amount of information can be retrieved from wide range of form such as different data relationships, patterns or any significant statistical co-relations. Today the advent of computers, large databases and the internet is make easier way to collect millions, billions and even trillions of pieces of data that can be systematically analyzed to help look for relationships and to seek solutions to difficult problems.

The government, private company, large organization and all businesses are looking for large volume of information collection for research and business development. These all collected data can be stored by them to future use. Such kind of information is most important whenever it is require. It will take very much time for searching and find require information from the internet or any other resources.

Here is an overview of data mining services inclusion:

* Market research, product research, survey and analysis
* Collection information about investors, funds and investments
* Forums, blogs and other resources for customer views/opinions
* Scanning large volumes of data
* Information extraction
* Pre-processing of data from the data warehouse
* Meta data extraction
* Web data online mining services
* data online mining research
* Online newspaper and news sources information research
* Excel sheet presentation of data collected from online sources
* Competitor analysis
* data mining books
* Information interpretation
* Updating collected data

After applying the process of data mining, you can easily information extract from filtered information and processing the refining the information. This data process is mainly divided into 3 sections; pre-processing, mining and validation. In short, data online mining is a process of converting data into authentic information.

The most important is that it takes much time to find important information from the data. If you want to grow your business rapidly, you must take quick and accurate decisions to grab timely available opportunities.

Source:http://ezinearticles.com/?What-is-Data-Mining?-Why-Data-Mining-is-Important?&id=3613677

Tuesday, 27 December 2016

Data Mining and Financial Data Analysis

Data Mining and Financial Data Analysis

Introduction:

Most marketers understand the value of collecting financial data, but also realize the challenges of leveraging this knowledge to create intelligent, proactive pathways back to the customer. Data mining - technologies and techniques for recognizing and tracking patterns within data - helps businesses sift through layers of seemingly unrelated data for meaningful relationships, where they can anticipate, rather than simply react to, customer needs as well as financial need. In this accessible introduction, we provides a business and technological overview of data mining and outlines how, along with sound business processes and complementary technologies, data mining can reinforce and redefine for financial analysis.

Objective:

1. The main objective of mining techniques is to discuss how customized data mining tools should be developed for financial data analysis.

2. Usage pattern, in terms of the purpose can be categories as per the need for financial analysis.

3. Develop a tool for financial analysis through data mining techniques.

Data mining:

Data mining is the procedure for extracting or mining knowledge for the large quantity of data or we can say data mining is "knowledge mining for data" or also we can say Knowledge Discovery in Database (KDD). Means data mining is : data collection , database creation, data management, data analysis and understanding.

There are some steps in the process of knowledge discovery in database, such as

1. Data cleaning. (To remove nose and inconsistent data)

2. Data integration. (Where multiple data source may be combined.)

3. Data selection. (Where data relevant to the analysis task are retrieved from the database.)

4. Data transformation. (Where data are transformed or consolidated into forms appropriate for mining by performing summary or aggregation operations, for instance)

5. Data mining. (An essential process where intelligent methods are applied in order to extract data patterns.)

6. Pattern evaluation. (To identify the truly interesting patterns representing knowledge based on some interesting measures.)

7. Knowledge presentation.(Where visualization and knowledge representation techniques are used to present the mined knowledge to the user.)

Data Warehouse:

A data warehouse is a repository of information collected from multiple sources, stored under a unified schema and which usually resides at a single site.

Text:

Most of the banks and financial institutions offer a wide verity of banking services such as checking, savings, business and individual customer transactions, credit and investment services like mutual funds etc. Some also offer insurance services and stock investment services.

There are different types of analysis available, but in this case we want to give one analysis known as "Evolution Analysis".

Data evolution analysis is used for the object whose behavior changes over time. Although this may include characterization, discrimination, association, classification, or clustering of time related data, means we can say this evolution analysis is done through the time series data analysis, sequence or periodicity pattern matching and similarity based data analysis.

Data collect from banking and financial sectors are often relatively complete, reliable and high quality, which gives the facility for analysis and data mining. Here we discuss few cases such as,

Eg, 1. Suppose we have stock market data of the last few years available. And we would like to invest in shares of best companies. A data mining study of stock exchange data may identify stock evolution regularities for overall stocks and for the stocks of particular companies. Such regularities may help predict future trends in stock market prices, contributing our decision making regarding stock investments.

Eg, 2. One may like to view the debt and revenue change by month, by region and by other factors along with minimum, maximum, total, average, and other statistical information. Data ware houses, give the facility for comparative analysis and outlier analysis all are play important roles in financial data analysis and mining.

Eg, 3. Loan payment prediction and customer credit analysis are critical to the business of the bank. There are many factors can strongly influence loan payment performance and customer credit rating. Data mining may help identify important factors and eliminate irrelevant one.

Factors related to the risk of loan payments like term of the loan, debt ratio, payment to income ratio, credit history and many more. The banks than decide whose profile shows relatively low risks according to the critical factor analysis.

We can perform the task faster and create a more sophisticated presentation with financial analysis software. These products condense complex data analyses into easy-to-understand graphic presentations. And there's a bonus: Such software can vault our practice to a more advanced business consulting level and help we attract new clients.

To help us find a program that best fits our needs-and our budget-we examined some of the leading packages that represent, by vendors' estimates, more than 90% of the market. Although all the packages are marketed as financial analysis software, they don't all perform every function needed for full-spectrum analyses. It should allow us to provide a unique service to clients.

The Products:

ACCPAC CFO (Comprehensive Financial Optimizer) is designed for small and medium-size enterprises and can help make business-planning decisions by modeling the impact of various options. This is accomplished by demonstrating the what-if outcomes of small changes. A roll forward feature prepares budgets or forecast reports in minutes. The program also generates a financial scorecard of key financial information and indicators.

Customized Financial Analysis by BizBench provides financial benchmarking to determine how a company compares to others in its industry by using the Risk Management Association (RMA) database. It also highlights key ratios that need improvement and year-to-year trend analysis. A unique function, Back Calculation, calculates the profit targets or the appropriate asset base to support existing sales and profitability. Its DuPont Model Analysis demonstrates how each ratio affects return on equity.

Financial Analysis CS reviews and compares a client's financial position with business peers or industry standards. It also can compare multiple locations of a single business to determine which are most profitable. Users who subscribe to the RMA option can integrate with Financial Analysis CS, which then lets them provide aggregated financial indicators of peers or industry standards, showing clients how their businesses compare.

iLumen regularly collects a client's financial information to provide ongoing analysis. It also provides benchmarking information, comparing the client's financial performance with industry peers. The system is Web-based and can monitor a client's performance on a monthly, quarterly and annual basis. The network can upload a trial balance file directly from any accounting software program and provide charts, graphs and ratios that demonstrate a company's performance for the period. Analysis tools are viewed through customized dashboards.

PlanGuru by New Horizon Technologies can generate client-ready integrated balance sheets, income statements and cash-flow statements. The program includes tools for analyzing data, making projections, forecasting and budgeting. It also supports multiple resulting scenarios. The system can calculate up to 21 financial ratios as well as the breakeven point. PlanGuru uses a spreadsheet-style interface and wizards that guide users through data entry. It can import from Excel, QuickBooks, Peachtree and plain text files. It comes in professional and consultant editions. An add-on, called the Business Analyzer, calculates benchmarks.

ProfitCents by Sageworks is Web-based, so it requires no software or updates. It integrates with QuickBooks, CCH, Caseware, Creative Solutions and Best Software applications. It also provides a wide variety of businesses analyses for nonprofits and sole proprietorships. The company offers free consulting, training and customer support. It's also available in Spanish.

ProfitSystem fx Profit Driver by CCH Tax and Accounting provides a wide range of financial diagnostics and analytics. It provides data in spreadsheet form and can calculate benchmarking against industry standards. The program can track up to 40 periods.

Source : http://ezinearticles.com/?Data-Mining-and-Financial-Data-Analysis&id=2752017

Friday, 16 December 2016

Importance of Data Mining Services in Business

Importance of Data Mining Services in Business

Data mining is used in re-establishment of hidden information of the data of the algorithms. It helps to extract the useful information starting from the data, which can be useful to make practical interpretations for the decision making.
It can be technically defined as automated extraction of hidden information of great databases for the predictive analysis. In other words, it is the retrieval of useful information from large masses of data, which is also presented in an analyzed form for specific decision-making. Although data mining is a relatively new term, the technology is not. It is thus also known as Knowledge discovery in databases since it grip searching for implied information in large databases.
It is primarily used today by companies with a strong customer focus - retail, financial, communication and marketing organizations. It is having lot of importance because of its huge applicability. It is being used increasingly in business applications for understanding and then predicting valuable data, like consumer buying actions and buying tendency, profiles of customers, industry analysis, etc. It is used in several applications like market research, consumer behavior, direct marketing, bioinformatics, genetics, text analysis, e-commerce, customer relationship management and financial services.

However, the use of some advanced technologies makes it a decision making tool as well. It is used in market research, industry research and for competitor analysis. It has applications in major industries like direct marketing, e-commerce, customer relationship management, scientific tests, genetics, financial services and utilities.

Data mining consists of major elements:

    Extract and load operation data onto the data store system.
    Store and manage the data in a multidimensional database system.
    Provide data access to business analysts and information technology professionals.
    Analyze the data by application software.
    Present the data in a useful format, such as a graph or table.

The use of data mining in business makes the data more related in application. There are several kinds of data mining: text mining, web mining, relational databases, graphic data mining, audio mining and video mining, which are all used in business intelligence applications. Data mining software is used to analyze consumer data and trends in banking as well as many other industries.

Outsourcing Web Research offer complete Data Mining Services and Solutions to quickly collective data and information from multiple Internet sources for your Business needs in a cost efficient manner.

Sourec : http://ezinearticles.com/?Importance-of-Data-Mining-Services-in-Business&id=2601221

Monday, 12 December 2016

Data Extraction Services - A Helpful Hand For Large Organization

Data Extraction Services - A Helpful Hand For Large Organization

The data extraction is the way to extract and to structure data from not structured and semi-structured electronic documents, as found on the web and in various data warehouses. Data extraction is extremely useful for the huge organizations which deal with considerable amounts of data, daily, which must be transformed into significant information and be stored for the use this later on.

Your company with tons of data but it is difficult to control and convert the data into useful information. Without right information at the right time and based on half of accurate information, decision makers with a company waste time by making wrong strategic decisions. In high competing world of businesses, the essential statistics such as information customer, the operational figures of the competitor and the sales figures inter-members play a big role in the manufacture of the strategic decisions. It can help you to take strategic business decisions that can shape your business' goals..

Outsourcing companies provide custom made services to the client's requirements. A few of the areas where it can be used to generate better sales leads, extract and harvest product pricing data, capture financial data, acquire real estate data, conduct market research , survey and analysis, conduct product research and analysis and duplicate an online database..

The different types of Data Extraction Services:

    Database Extraction:
    Reorganized data from multiple databases such as statistics about competitor's products, pricing and latest offers and customer opinion and reviews can be extracted and stored as per the requirement of company.

    Web Data Extraction:
    Web Data Extraction is also known as data Extraction which is usually referred to the practice of extract or reading text data from a targeted website.

Businesses have now realized about the huge benefits they can get by outsourcing their services. Then outsourcing is profitable option for business. Since all projects are custom based to suit the exact needs of the customer, huge savings in terms of time, money and infrastructure are among the many advantages that outsourcing brings.

Advantages of Outsourcing Data Extraction Services:

    Improved technology scalability
    Skilled and qualified technical staff who are proficient in English
    Advanced infrastructure resources
    Quick turnaround time
    Cost-effective prices
    Secure Network systems to ensure data safety
    Increased market coverage

By outsourcing, you can definitely increase your competitive advantages. Outsourcing of services helps businesses to manage their data effectively, which in turn would enable them to experience an increase in profits.

Outsourcing Web Research offer complete Data Extraction Services and Solutions to quickly collective data and information from multiple Internet sources for your Business needs in a cost efficient manner. For more info please visit us at: http://www.webscrapingexpert.com/ or directly send your requirements at: info@webscrapingexpert.com

Source:http://ezinearticles.com/?Data-Extraction-Services---A-Helpful-Hand-For-Large-Organization&id=2477589

Tuesday, 6 December 2016

Increasing Accessibility by Scraping Information From PDF

Increasing Accessibility by Scraping Information From PDF

You may have heard about data scraping which is a method that is being used by computer programs in extracting data from an output that comes from another program. To put it simply, this is a process which involves the automatic sorting of information that can be found on different resources including the internet which is inside an html file, PDF or any other documents. In addition to that, there is the collection of pertinent information. These pieces of information will be contained into the databases or spreadsheets so that the users can retrieve them later.

Most of the websites today have text that can be accessed and written easily in the source code. However, there are now other businesses nowadays that choose to make use of Adobe PDF files or Portable Document Format. This is a type of file that can be viewed by simply using the free software known as the Adobe Acrobat. Almost any operating system supports the said software. There are many advantages when you choose to utilize PDF files. Among them is that the document that you have looks exactly the same even if you put it in another computer so that you can view it. Therefore, this makes it ideal for business documents or even specification sheets. Of course there are disadvantages as well. One of which is that the text that is contained in the file is converted into an image. In this case, it is often that you may have problems with this when it comes to the copying and pasting.

This is why there are some that start scraping information from PDF. This is often called PDF scraping in which this is the process that is just like data scraping only that you will be getting information that is contained in your PDF files. In order for you to begin scraping information from PDF, you must choose and exploit a tool that is specifically designed for this process. However, you will find that it is not easy to locate the right tool that will enable you to perform PDF scraping effectively. This is because most of the tools today have problems in obtaining exactly the same data that you want without personalizing them.

Nevertheless, if you search well enough, you will be able to encounter the program that you are looking for. There is no need for you to have programming language knowledge in order for you to use them. You can easily specify your own preferences and the software will do the rest of the work for you. There are also companies out there that you can contact and they will perform the task since they have the right tools that they can use. If you choose to do things manually, you will find that this is indeed tedious and complicated whereas if you compare this to having professionals do the job for you, they will be able to finish it in no time at all. Scraping information from PDF is a process where you collect the information that can be found on the internet and this does not infringe copyright laws.

Source:http://ezinearticles.com/?Increasing-Accessibility-by-Scraping-Information-From-PDF&id=4593863

Friday, 2 December 2016

Web Data Extraction Services and Data Collection Form Website Pages

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:
• Spider a government portal, extracting names of citizens for a survey
• Crawl competitor websites for product pricing and feature data
• Use web scraping to download images from a stock photography site for website design

Automated Data Collection
Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:
• Monitor price information for select stocks on hourly basis
• Collect mortgage rates from various financial firms on daily basis
• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.

Source: http://ezinearticles.com/?Web-Data-Extraction-Services-and-Data-Collection-Form-Website-Pages&id=4860417

Tuesday, 29 November 2016

Get Started With Scraping – Extracting Simple Tables from PDF Documents

Get Started With Scraping – Extracting Simple Tables from PDF Documents

As anyone who has tried working with “real world” data releases will know, sometimes the only place you can find a particular dataset is as a table locked up in a PDF document, whether embedded in the flow of a document, included as an appendix, or representing a printout from a spreadsheet. Sometimes it can be possible to copy and paste the data out of the table by hand, although for multi-page documents this can be something of a chore. At other times, copy-and-pasting may result in something of a jumbled mess. Whilst there are several applications available that claim to offer reliable table extraction services (some free software,so some open source software, some commercial software), it can be instructive to “View Source” on the PDF document itself to see what might be involved in scraping data from it.

In this post, we’ll look at a simple PDF document to get a feel for what’s involved with scraping a well-behaved table from it. Whilst this won’t turn you into a virtuoso scraper of PDFs, it should give you a few hints about how to get started. If you don’t count yourself as a programmer, it may be worth reading through this tutorial anyway! If nothing else, it may give a feel for the sorts of the thing that are possible when it comes to extracting data from a PDF document.

The computer language I’ll be using to scrape the documents is the Python programming language. If you don’t class yourself as a programmer, don’t worry – you can go a long way copying and pasting other people’s code and then just changing some of the decipherable numbers and letters!

So let’s begin, with a look at a PDF I came across during the recent School of Data data expedition on mapping the garment factories. Much of the source data used in that expedition came via a set of PDF documents detailing the supplier lists of various garment retailers. The image I’ve grabbed below shows one such list, from Varner-Gruppen.

If we look at the table (and looking at the PDF can be a good place to start!) we see that the table is a regular one, with a set of columns separated by white space, and rows that for the majority of cases occupy just a single line.

I’m not sure what the “proper” way of scraping the tabular data from this document is, but here’s the sort approach I’ve arrived at from a combination of copying things I’ve seen, and bit of my own problem solving.

The environment I’ll use to write the scraper is Scraperwiki. Scraperwiki is undergoing something of a relaunch at the moment, so the screenshots may differ a little from what’s there now, but the code should be the same once you get started. To be able to copy – and save – your own scrapers, you’ll need an account; but it’s free, for the moment (though there is likely to soon be a limit on the number of free scrapers you can run…) so there’s no reason not to…;-)

Once you create a new scraper:

you’ll be presented with an editor window, where you can write your scraper code (don’t panic!), along with a status area at the bottom of the screen. This area is used to display log messages when you run your scraper, as well as updates about the pages you’re hoping to scrape that you’ve loaded into the scraper from elsewhere on the web, and details of any data you have popped into the small SQLite database that is associated with the scraper (really, DON’T PANIC!…)

Give your scraper a name, and save it…

To start with, we need to load a couple of programme libraries into the scraper. These libraries provide a lot of the programming tools that do a lot of the heavy lifting for us, and hide much of the nastiness of working with the raw PDF document data.

import scraperwiki
import urllib2, lxml.etree

No, I don’t really know everything these libraries can do either, although I do know where to find the documentation for them… lxm.etree, scraperwiki! (You can also download and run the scraperwiki library in your own Python programmes outside of scraperwiki.com.)

To load the target PDF document into the scraper, we need to tell the scraper where to find it. In this case, the web address/URL of the document is http://cdn.varner.eu/cdn-1ce36b6442a6146/Global/Varner/CSR/Downloads_CSR/Fabrikklister_VarnerGruppen_2013.pdf, so that’s exactly what we’ll use:

url = 'http://cdn.varner.eu/cdn-1ce36b6442a6146/Global/Varner/CSR/Downloads_CSR/Fabrikklister_VarnerGruppen_2013.pdf'

The following three lines will load the file in to the scraper, “parse” the data into an XML document format, which represents the whole PDF in a way that resembles an HTML page (sort of), and then provides us with a link to the “root” of that document.

pdfdata = urllib2.urlopen(url).read()
xmldata = scraperwiki.pdftoxml(pdfdata)
root = lxml.etree.fromstring(xmldata)

If you run this bit of code, you’ll see the PDF document gets loaded in:

Here’s an example of what some of the XML from the PDF we’ve just loaded looks like preview it:

print etree.tostring(root, pretty_print=True)

We can see how many pages there are in the document using the following command:

pages = list(root)
print "There are",len(pages),"pages"

The scraperwiki.pdftoxml library I’m using converts each line of the PDF document to a separate grouped elements. We can iterate through each page, and each element within each page, using the following nested loop:

for page in pages:
  for el in page:

We can take a peak inside the elements using the following print statement within that nested loop:

if el.tag == "text":
  print el.text, el.attrib

Here’s the sort of thing we see from one of the table pages (the actual document has a cover page followed by several tabulated data pages):

Bangladesh {'font': '3', 'width': '62', 'top': '289', 'height': '17', 'left': '73'}
Cutting Edge {'font': '3', 'width': '71', 'top': '289', 'height': '17', 'left': '160'}
1612, South Salna, Salna Bazar {'font': '3', 'width': '165', 'top': '289', 'height': '17', 'left': '425'}
Gazipur {'font': '3', 'width': '44', 'top': '289', 'height': '17', 'left': '907'}
Dhaka Division {'font': '3', 'width': '85', 'top': '289', 'height': '17', 'left': '1059'}
Bangladesh {'font': '3', 'width': '62', 'top': '311', 'height': '17', 'left': '73'}

Looking again the output from each row of the table, we see that there are regular position indicators, particulalry the “top” and “left” coordinates, which correspond to the co-ordinates of where the registration point of each block of text should be placed on the page.

If we imagine the PDF table marked up as follows, we might be able to add some of the co-ordinate values as follows – the blue lines correspond to co-ordinates extracted from the document:

imaginary table lines

We can now construct a small default reasoning hierarchy that describes the contents of each row based on the horizontal (“x-axis”, or “left” co-ordinate) value. For convenience, we pick values that offer a clear separation between the x-co-ordinates defined in the document. In the diagram above, the red lines mark the threshold values I have used to distinguish one column from another:

if int(el.attrib['left']) < 100: print 'Country:', el.text,
elif int(el.attrib['left']) < 250: print 'Factory name:', el.text,
elif int(el.attrib['left']) < 500: print 'Address:', el.text,
elif int(el.attrib['left']) < 1000: print 'City:', el.text,
else:
  print 'Region:', el.text

Take a deep breath and try to follow the logic of it. Hopefully you can see how this works…? The data rows are ordered, stepping through each cell in the table (working left right) for each table row in turn. The repeated if-else statement tries to find the leftmost column into which a text value might fall, based on the value of its “left” attribute. When we find the value of the rightmost column, we print out the data associated with each column in that row.

We’re now in a position to look at running a proper test scrape, but let’s optimise the code slightly first: we know that the data table starts on the second page of the PDF document, so we can ignore the first page when we loop through the pages. As with many programming languages, Python tends to start counting with a 0; to loop through the second page to the final page in the document, we can use this revised loop statement:

for page in pages[1:]:

Here, pages describes a list element with N items, which we can describe explicitly as pages[0:N-1]. Python list indexing counts the first item in the list as item zero, so [1:] defines the sublist from the second item in the list (which has the index value 1 given that we start counting at zero) to the end of the list.

Rather than just printing out the data, what we really want to do is grab hold of it, a row at a time, and add it to a database.

We can use a simple data structure to model each row in a way that identifies which data element was in which column. We initiate this data element in the first cell of a row, and print it out in the last. Here’s some code to do that:

for page in pages[1:]:
  for el in page:
    if el.tag == "text":
      if int(el.attrib['left']) < 100: data = { 'Country': el.text }
      elif int(el.attrib['left']) < 250: data['Factory name'] = el.text
      elif int(el.attrib['left']) < 500: data['Address'] = el.text
      elif int(el.attrib['left']) < 1000: data['City'] = el.text
      else:
        data['Region'] = el.text
        print data

And here’s the sort of thing we get if we run it:

starting to get structured data

That looks nearly there, doesn’t it, although if you peer closely you may notice that sometimes we catch a header row. There are a couple of ways we might be able to ignore the elements in the first, header row of the table on each page.

    We could keep track of the “top” co-ordinate value and ignore the header line based on the value of this attribute.
    We could tack a hacky lazy way out and explicitly ignore any text value that is one of the column header values.

The first is rather more elegant, and would also allow us to automatically label each column and retain it’s semantics, rather than explicitly labelling the columns using out own labels. (Can you see how? If we know we are in the title row based on the “top” co-ordinate value, we can associate the column headings with the “left” coordinate value.) The second approach is a bit more of a blunt instrument, but it does the job…

skiplist=['COUNTRY','FACTORY NAME','ADDRESS','CITY','REGION']
for page in pages[1:]:
  for el in page:
    if el.tag == "text" and el.text not in skiplist:
      if int(el.attrib['left']) < 100: data = { 'Country': el.text }
      elif int(el.attrib['left']) < 250: data['Factory name'] = el.text
      elif int(el.attrib['left']) < 500: data['Address'] = el.text
      elif int(el.attrib['left']) < 1000: data['City'] = el.text
      else:
        data['Region'] = el.text
        print data

At the end of the day, it’s the data we’re after and the aim is not necessarily to produce a reusable, general solution – expedient means occasionally win out! As ever, we have to decide for ourselves the point at which we stop trying to automate everything and consider whether it makes more sense to hard code our observations rather than trying to write scripts to automate or generalise them.

http://xkcd.com/974/ - The General Problem

The final step is to add the data to a database. For example, instead of printing out each data row, we could add the data to the a scraper database table using the command:

scraperwiki.sqlite.save(unique_keys=[], table_name='fabvarn', data=data)

Scraped data preview

Note that the repeated database accesses can slow Scraperwiki down somewhat, so instead we might choose to build up a list of data records, one per row, for each page and them and then add all the companies scraped from a page one page at a time.

If we need to remove a database table, this utility function may help – call it using the name of the table you want to clear…

def dropper(table):
  if table!='':
    try: scraperwiki.sqlite.execute('drop table "'+table+'"')
    except: pass

Here’s another handy utility routine I found somewhere a long time ago (I’ve lost the original reference?) that “flattens” the marked up elements and just returns the textual content of them:

def gettext_with_bi_tags(el):
  res = [ ]
  if el.text:
    res.append(el.text)
  for lel in el:
    res.append("<%s>" % lel.tag)
    res.append(gettext_with_bi_tags(lel))
    res.append("</%s>" % lel.tag)
    if el.tail:
      res.append(el.tail)
  return "".join(res).strip()

If we pass this function something like the string <em>Some text<em> or <em>Some <strong>text</strong></em> it will return Some text.

Having saved the data to the scraper database, we can download it or access it via a SQL API from the scraper homepage:

scrpaed data - db

You can find a copy of the scraper here and a copy of various stages of the code development here.

Finally, it is worth noting that there is a small number of “badly behaved” data rows that split over more than one table row on the PDF.

broken scraper row

Whilst we can handle these within the scraper script, the effort of creating the exception handlers sometimes exceeds the pain associated with identifying the broken rows and fixing the data associated with them by hand.

Summary

This tutorial has shown one way of writing a simple scraper for extracting tabular data from a simply structured PDF document. In much the same way as a sculptor may lock on to a particular idea when working a piece of stone, a scraper writer may find that they lock in to a particular way of parsing data out of a data, and develop a particular set of abstractions and exception handlers as a result. Writing scrapers can be infuriating at times, but may also prove very rewarding in the way that solving any puzzle can be. Compared to copying and pasting data from a PDF by hand, it may also be time well spent!

It is also worth remembering that sometimes it can be quicker to write a scraper that does most of the job, and then finish off the data cleansing or exception handling using another tool, such as OpenRefine or even just a simple text editor. On occasion, it may also make sense to throw the data into a database table as quickly as you can, and then develop code to manage a second pass that takes the raw data out of the database, tidies it up, and then writes it in a cleaner or more structured form into another database table.

Source: http://schoolofdata.org/2013/06/18/get-started-with-scraping-extracting-simple-tables-from-pdf-documents/

Tuesday, 15 November 2016

How to scrape search results from search engines like Google, Bing and Yahoo

How to scrape search results from search engines like Google, Bing and Yahoo

Search giants like Google, Yahoo and Bing made their empire on scraping others content. However, they don’t want you to scrape them. How ironic, isn’t it?

Search engine performance is a very important metric all digital marketers want to measure and improve. I’m sure you will be using some great SEO tools to check how your keywords perform. All great SEO tool comes with a search keyword ranking feature. The tools will tell you how your keywords are performing in google, yahoo bing etc.

 How will you get data from search engines If you want to build a keyword ranking app?

 These search engines have API’s but the daily query limit is very low and not useful for the commercial purpose. The only solution is to scrape search results. Search engine giants obviously know this :). Once they know that you are scraping, they will  block your IP, Period!

 How do Search engines detect bots?

 Here are the common methods of detection of bots.

* IP address: Search engines can detect if there are too many requests coming from a single IP. If a high amount of traffic is detected, they will throw a captcha.

 * Search patterns: Search engines match traffic patterns to an existing set of patterns and if there is huge variation, they will classify this as a bot.

 If you don’t have access to sophisticated technology, it is impossible to scrape search engines like google, Bing or Yahoo.

 How to avoid detection

There are some things you can do to  avoid detection.

    Scrape slowly and don’t try to squeeze everything at once.
    Switch user agents between queries
    Scrape randomly and don’t follow the same pattern
    Use intelligent IP rotations
    Clear Cookies after each IP change or disable them completely

Thanks for reading this blog post.

Source: http://blog.datahut.co/how-to-scrape-search-results-from-search-engines-like-google-bing-and-yahoo/

Friday, 14 October 2016

Scraping Yelp Data and How to use?

Scraping Yelp Data and How to use?

We get a lot of requests to scrape data from Yelp. These requests come in on a daily basis, sometimes several times a day. At the same time we have not seen a good business case for a commercial project with scraping Yelp.

We have decided to release a simple example Yelp robot which anyone can run on Chrome inside your computer, tune to your own requirements and collect some data. With this robot you can save business contact information like address, postal code, telephone numbers, website addresses etc.  Robot is placed in our Demo space on Web Robots portal for anyone to use, just sign up, find the robot and use it.

How to use it:

    Sign in to our portal here.
    Download our scraping extension from here.
    Find robot named Yelp_us_demo in the dropdown.
    Modify start URL to the first page of your search results. For example: http://www.yelp.com/search?find_desc=Restaurants&find_loc=Arlington,+VA,+USA
    Click Run.
    Let robot finish it’s job and download data from portal.

Some things to consider:

This robot is placed in our Demo space – therefore it is accessible to anyone. Anyone will be able to modify and run it, anyone will be able to download collected data. Robot’s code may be edited by someone else, but you can always restore it from sample code below. Yelp limits number of search results, so do not expect to scrape more results than you would normally see by search.

In case you want to create your own version of such robot, here it’s full code:

// starting URL above must be the first page of search results.
// Example: http://www.yelp.com/search?find_desc=Restaurants&find_loc=Arlington,+VA,+USA

steps.start = function () {

   var rows = [];

   $(".biz-listing-large").each (function (i,v) {
     if ($("h3 a", v).length > 0)
       {
        var row = {};
        row.company = $(".biz-name", v).text().trim();
        row.reviews =$(".review-count", v).text().trim();
        row.companyLink = $(".biz-name", v)[0].href;
        row.location = $(".secondary-attributes address", v).text().trim();
        row.phone = $(".biz-phone", v).text().trim();
        rows.push (row);
      }
   });

   emit ("yelp", rows);
   if ($(".next").length === 1) {
     next ($(".next")[0].href, "start");
   }
 done();
};

Source: https://webrobots.io/scraping-yelp-data/

Monday, 3 October 2016

Has It Been Done Before? Optimize Your Patent Search Using Patent Scraping Technology

Since the US patent office opened in 1790, inventors across the United States have been submitting all sorts of great products and half-baked ideas to their database. Nowadays, many individuals get ideas for great products only to have the patent office do a patent search and tell them that their ideas have already been patented by someone else! Herin lies a question: How do I perform a patent search to find out if my invention has already been patented before I invest time and money into developing it?

The US patent office patent search database is available to anyone with internet access.

US Patent Search Homepage

Performing a patent search with the patent searching tools on the US Patent office webpage can prove to be a very time consuming process. For example, patent searching the database for "dog" and "food" yields 5745 patent search results. The straight-forward approach to investigating the patent search results for your particular idea is to go through all 5745 results one at a time looking for yours. Get some munchies and settle in, this could take a while! The patent search database sorts results by patent number instead of relevancy. This means that if your idea was recently patented, you will find it near the top but if it wasn't, you could be searching for quite a while. Also, most patent search results have images associated with them. Downloading and displaying these images over the internet can be very time consuming depending on you internet connection and the availability of the patent search database servers.

Because patent searches take such a long time, many companies and organizations are looking ways to improve the process. Some organizations and companies will hire employees for the sole purpose of performing patent searches for them. Others contract out the job to small business that specialize in patent searches. The latest technology for performing patent searches is called patent scraping.

Patent scraping is the process of writing computer automated scripts that analyze a website and copy only the content you are interested in into easily accessible databases or spreadsheets on your computer. Because it is a computerized script performing the patent search, you don't need a separate employee to get the data, you can let it run the patent scraping while you perform other important tasks! Patent scraping technology can also extract text content from images. By saving the images and textual content to your computer, you can then very efficiently search them for content and relevancy; thus saving you lots of time that could be better spent actually inventing something!

To put a real-world face on this, let us consider the pharmaceutical industry. Many different companies are competing for the patent on the next big drug. It has become an indispensible tactic of the industry for one company to perform patent searches for what patents the other companies are applying for, thus learning in which direction the research and development team of the other company is taking them. Using this information, the company can then choose to either pursue that direction heavily, or spin off in a different direction. It would quickly become very costly to maintain a team of researchers dedicated to only performing patent searches all day. Patent scraping technology is the means for figuring out what ideas and technologies are coming about before they make headline news. It is by utilizing patent scraping technology that the large companies stay up to date on the latest trends in technology.

Source: http://ezinearticles.com/?Has-It-Been-Done-Before?-Optimize-Your-Patent-Search-Using-Patent-Scraping-Technology&id=171000

Friday, 23 September 2016

How to use Web Content Extractor(WCE) as Email Scraper?

How to use Web Content Extractor(WCE) as Email Scraper?

Web Content Extractor is a great web scraping software developed by Newprosoft Team. The software has easy to use project wizard to create a scraping configuration and scrape data from websites.

One day I came to see the Visual Email Extractor which is also product of Newprosoft and similar to Web Content Extractor but it’s primary use is to scrape email addresses by crawling websites you feed to the scraper. I had noticed that with the little modification in Web Content Extractor project configuration you can use it same as Visual Email Extractor to extract email addresses.

In this post I will show you what configuration makes the Web Content Extractor to extract email addresses. I still recommend Visual Email Extractor as it has lot more features then extracting email using WCE.

Here are the configuration that makes WCE to Extract Emails.

Step 1 : Open Web Content Extractor and Create New Project and Click on Next.

Step 2:  Under Crawling Rules -> Advanced Rules Tab do the following settings

Crawling Level 1 Settings

Follow Links if link text equals:
*contact*; *feedback*; *support*; *about*

for 'Follow Links if link text equals' text box enter following values:
contact; feedback; support; about

for 'Do not Follow links if URL contains' text box enter following values:

google.; yahoo.; bing; msn.; altavista.; myspace.com; youtube.com; googleusercontent.com; =http; .jpg; .gif; .png; .bmp; .exe; .zip; .pdf;

Set 'Maximum Crawling Deapth' to 2

set 'Crawling Order' to Deapth First Crawling

Tick mark below below check boxes:

->Follow all internal links

  Crawling Level 2  Settings

set 'Follow links if link text equals' to below value

*contact*; *feedback*; *support*; *about*

set 'Follow links if url contains' text box to below value

contact; feedback; support; about

set 'DO NOT follow links if url contains' text box to below value

=http

Step 3 After doing above settings now click on Next  -> in Extraction Pattern window -> Click on Define ->  in Web Page Address (URL) give any URL where email is given.  and click on  + sign right of Date Fields to define scraping pattern.

Now inside HTML Structure selects HTML check box or Body check box which means for each page it will take whole page content to parse data.

Now last settings to extract emails from page using regular expression based email extraction function.  Open Predefined Script window and select ‘Extract_Email_Addresses‘ and click on OK. and if you have used page that contains email then in Script Result’ you will be able to see the harvested email.

Hope this will help you to use your Web Content Extractor as a Email Scraper.. Share your view in comment.

Source: http://webdata-scraping.com/use-web-content-extractor-as-email-scraper/

Wednesday, 14 September 2016

Run Code Template – New Feature Added to Fminer Web Scraping Tool

Run Code Template – New Feature Added to Fminer Web Scraping Tool

Fminer is one of the powerful web scraping software, I already given brief of all the Fminer features in previous post. In this post I am going to introduce one of the interesting feature of fminer which is Run Code Template that is recently added to Fminer, this feature is similar to “Fminer Run Code” action but it’s different in a way you can use it. The Run Code Action you can use inside the data scraping flow and python code get executed when scraper start running.

While Run Code Templates are the saved python code snippets that you can run on the data tables after scraping completes. Assume if you get white space in scraped data then you can easily trim this left and right spaces by just executing “strip_column” template, see the code of that template below.

'''Strip all data of a column in data table
Remove the blank of data in the head and the tail.
'''

tabName = '[%table1|data table%]'
colName = '[%table1.column1|table column for strip%]'

tab = tables[tabName]
for i, row in enumerate(tab):
    row[colName] = row[colName].strip()   
    tab.edit_row(i, row)

This template comes with Fminer and few other template like “merge_tables_with_same_columns”.  Below are the steps how you can execute template python code on scraped data.

Step 1: Click on second icon from right that says “Run Code” under the Data section

Step 2: One popup will appear, you need to click on “Templates” icon and choose the template you want to execute and then click on Ok.

Step 3: Now the window will appear for configuration that will ask you to choose the table and column under that table on which you want to execute the code. Now click on Ok again.

Step 4: Now you can see the code of that template, now you can click on execute icon and script will start running, based on number of records it will take time to finish execution.

In many web scraping projects I found this template code very handy for cleaning data and making life easy. Templates are stored at following path so you can create your own template with customized code.

C:\Program Files (x86)\FMiner\templates

I have created one template which I use to remove HTML code that comes while scraping badly organized HTML pages. Below is the code of template for stripping html:

'''Strip HTML will remove all html tags of a column in data table.
'''
import re
tabName = '[%table1|data table%]'
colName = '[%table1.column1|table column for substring%]'
colNew = '[%table1.column1|table column to add new data%]'
tab = tables[tabName]
for i, row in enumerate(tab):
    cleanr =re.compile('<.*?>')
    cleantext = re.sub(cleanr,'', row[colName])
    row[colNew] = cleantext 
    tab.edit_row(i, row)

Stay connected as I am going to post more code templates that will make your web scraping life easy and manipulate data on fly.

Source: http://webdata-scraping.com/run-code-template-new-feature-added-fminer-web-scraping-tool/

Saturday, 3 September 2016

Benefits of Ruby over Python & R for Web Scraping

Benefits of Ruby over Python & R for Web Scraping

In this data driven world, you need to be constantly vigilant, as information and key data for an organization keeps changing all the while. If you get the right data at the right time in an efficient manner, you can stay ahead of competition. Hence, web scraping is an essential way of getting the right data. This data is crucial for many organizations, and scraping technique will help them keep an eye on the data and get the information that will benefit them further.

Web scraping involves both crawling the web for data and extracting the data from the page. There are several languages which programmers prefer for web scraping, the top ones are Ruby, Python & R. Each language has its own pros and cons over the other, but if you want the best results and a smooth flow, Ruby is what you should be looking for.

Ruby is very good at production deployments and using Ruby, Redis & Chef have proven to be a great combination. String manipulation in Ruby is very easy because it is based on Perl syntax. Also, Ruby is great for analyzing web pages using  one of the very powerful gems called Nokogiri. Nokogiri is much easier to use as compared to other packages and libraries used by R and Python respectively. Nokogiri can deal with broken HTML / HTML fragments easily. Ruby also has many extensions, such as Sanitize and Loofah, that can help clean up broken HTML.

Python programmers widely use a library called Beautiful Soup for pulling data out of HTML & XML files. It works with your favorite parser to provide idiomatic ways of navigating, searching, and modifying the parse tree. It commonly saves programmers hours or days of work. R programmers have a new package called rvest that makes it easy to scrape data from html web pages, by libraries like beautiful soup. It is designed to work with magrittr so that you can express complex operations as elegant pipelines composed of simple, easily understood pieces.

To help you understand it more effectively, below is a comprehensive infographic for the same.

Ruby is far ahead of Python & R for cloud development and deployments.  The Ruby Bundler system is just great for managing and deploying packages from Github. Using Chef, you can start up and tear down nodes on EC2, at will, and monitor for failures,  scale up or down, reset your IP addresses, etc. Ruby also has great testing frameworks like Fakeweb and Capybara, making it almost trivial to build a great suite of unit tests and to include advanced features, like crawling  and scraping using webkit / selenium. 

The only disadvantage to Ruby is lack of machine learning and NLP toolkits, making it much harder to emulate the capacity of a tool like Pattern.  It can still be done, however, since most of the heavy lifting can be done asynchronously using Unix tools like liblinear or vowpal wabbit.

Conclusion

Each language has its plus point and you can pick the one which you are most comfortable with. But if you are looking for smooth web scraping experience, then Ruby is the best option. That has been our choice too for years at PromptCloud for the best web scraping results. If you have any further questions about this, then feel free to get in touch with us.

Source: https://www.promptcloud.com/blog/benefits-of-ruby-for-web-scraping

Saturday, 27 August 2016

How Web Scraping can Help you Detect Weak spots in your Business

How Web Scraping can Help you Detect Weak spots in your Business

Business intelligence is not a new term. Businesses have always been employing experts for analysing the progress, market and industry trends to keep their growth graph going up. Now that we have big data and the tool to gather this data – Web scraping, business intelligence has become even more fruitful. In fact, business intelligence has become a necessary thing to survive now that the competition is fierce in every industry. This is the reason why most enterprises depend on web scraping solutions to gather the data relevant to their businesses. This data is highly insightful and dependable enough to make critical business decisions. Business intelligence from web scraping is definitely a game changer for companies as it can supply relevant and actionable data with minimal effort.

Most businesses have weak spots that are being overlooked or hidden from the plain sight. These weak spots, if left unnoticed can gradually result in the downfall of your company. Here is how you can use data acquired through web scraping to detect weak spots in your business and strengthen them.

Competitor analysis

Many a times, you can find out the flaws in your business by keeping a close watch on your competitors. Competitor analysis is something that we owe to web scraping as the level of competitive intelligence that you can derive from web scraping has never been achievable in the past. With crawling forums and social media sites where your target audience is, you can easily find out if your competitor is leveraging something you have overlooked. Competitor analysis is all about staying updated to each and every action by your competitors, so that you can always be prepared for their next strategic move. If your competitors are doing better than you, this data can be used to make a comparison between your business and theirs which would give you insights on where you lack.

Brand monitoring on Social media

With social media platforms acting like platforms where businesses and customers can interact with each other, the data available on these sites are increasingly becoming relevant to businesses. Any issues in your business operations will also reflect on your customer sentiments. Social media is a goldmine of sentiment data that can help you detect issues within your company. By analysing the posts that mention your brand or product on social media sites, you can identify what department of your company is functioning well and what isn’t.

For example, if you are an Ecommerce portal and many users are complaining about delivery issues from your company on social media, you might want to switch to a better logistics partner who does a better job. The ability to identify such issues at the earliest is extremely important and that’s where web scraping becomes a life saver. With social media scraping, monitoring your brand on social media is easy like never before and the chances of minor issues escalating to bigger ones is almost non-existent. Brand monitoring is extremely crucial if you are a business operating in the online space. Social media scraping solutions are provided by many leading web scraping companies, which totally eliminates the technical complications associated with the process for you.

Finding untapped opportunities

There are always new and untapped markets and opportunities that are relevant to your business. Finding them is not going to be an easy task with manual and outdated methods of research. Web scraping can fill this gap and help you find opportunities that your company can make use of to leverage your reach and progress. Sometimes, targeting the right audience makes all the difference that you’ve been trying to make. By using web crawling to find mentions of your relevant keywords on the web, you can easily stay updated on your niche and fill in to any new untapped markets. Web crawling for keywords is better explained in our previous blog.

Bottom line

It is not a cakewalk to stay ahead in the competition considering how competitive every industry has become in this digital age. It is crucial to find the weak spots and untapped opportunities of your business before someone else does. Of course, you can always use some help from the technology when you need it. Web scraping is clearly the best way to find and gather data that would help you figure these out. With web crawling solutions that can completely take care of this niche process, nothing is stopping you from using the data and insights that the web has in stock for your business.

Source: https://www.promptcloud.com/blog/web-scraping-detect-weak-spots-business

Tuesday, 16 August 2016

How Web Data Extraction Services Will Save Your Time and Money by Automatic Data Collection

How Web Data Extraction Services Will Save Your Time and Money by Automatic Data Collection

Data scrape is the process of extracting data from web by using software program from proven website only. Extracted data any one can use for any purposes as per the desires in various industries as the web having every important data of the world. We provide best of the web data extracting software. We have the expertise and one of kind knowledge in web data extraction, image scrapping, screen scrapping, email extract services, data mining, web grabbing.

Who can use Data Scraping Services?

Data scraping and extraction services can be used by any organization, company, or any firm who would like to have a data from particular industry, data of targeted customer, particular company, or anything which is available on net like data of email id, website name, search term or anything which is available on web. Most of time a marketing company like to use data scraping and data extraction services to do marketing for a particular product in certain industry and to reach the targeted customer for example if X company like to contact a restaurant of California city, so our software can extract the data of restaurant of California city and a marketing company can use this data to market their restaurant kind of product. MLM and Network marketing company also use data extraction and data scrapping services to to find a new customer by extracting data of certain prospective customer and can contact customer by telephone, sending a postcard, email marketing, and this way they build their huge network and build large group for their own product and company.

We helped many companies to find particular data as per their need for example.

Web Data Extraction

Web pages are built using text-based mark-up languages (HTML and XHTML), and frequently contain a wealth of useful data in text form. However, most web pages are designed for human end-users and not for ease of automated use. Because of this, tool kits that scrape web content were created. A web scraper is an API to extract data from a web site. We help you to create a kind of API which helps you to scrape data as per your need. We provide quality and affordable web Data Extraction application

Data Collection

Normally, data transfer between programs is accomplished using info structures suited for automated processing by computers, not people. Such interchange formats and protocols are typically rigidly structured, well-documented, easily parsed, and keep ambiguity to a minimum. Very often, these transmissions are not human-readable at all. That's why the key element that distinguishes data scraping from regular parsing is that the output being scraped was intended for display to an end-user.

Email Extractor

A tool which helps you to extract the email ids from any reliable sources automatically that is called a email extractor. It basically services the function of collecting business contacts from various web pages, HTML files, text files or any other format without duplicates email ids.

Screen scrapping

Screen scraping referred to the practice of reading text information from a computer display terminal's screen and collecting visual data from a source, instead of parsing data as in web scraping.

Data Mining Services

Data Mining Services is the process of extracting patterns from information. Datamining is becoming an increasingly important tool to transform the data into information. Any format including MS excels, CSV, HTML and many such formats according to your requirements.

Web spider

A Web spider is a computer program that browses the World Wide Web in a methodical, automated manner or in an orderly fashion. Many sites, in particular search engines, use spidering as a means of providing up-to-date data.

Web Grabber

Web grabber is just a other name of the data scraping or data extraction.

Web Bot

Web Bot is software program that is claimed to be able to predict future events by tracking keywords entered on the Internet. Web bot software is the best program to pull out articles, blog, relevant website content and many such website related data We have worked with many clients for data extracting, data scrapping and data mining they are really happy with our services we provide very quality services and make your work data work very easy and automatic.

Source: http://ezinearticles.com/?How-Web-Data-Extraction-Services-Will-Save-Your-Time-and-Money-by-Automatic-Data-Collection&id=5159023

Monday, 8 August 2016

Difference between Data Mining and KDD

Difference between Data Mining and KDD

Data, in its raw form, is just a collection of things, where little information might be derived. Together with the development of information discovery methods(Data Mining and KDD), the value of the info is significantly improved.

Data mining is one among the steps of Knowledge Discovery in Databases(KDD) as can be shown by the image below.KDD is a multi-step process that encourages the conversion of data to useful information. Data mining is the pattern extraction phase of KDD. Data mining can take on several types, the option influenced by the desired outcomes.

Knowledge Discovery in Databases Steps
Data Selection

KDD isn’t prepared without human interaction. The choice of subset and the data set requires knowledge of the domain from which the data is to be taken. Removing non-related information elements from the dataset reduces the search space during the data mining phase of KDD. The sample size and structure are established during this point, if the dataset can be assessed employing a testing of the info.
Pre-processing

Databases do contain incorrect or missing data. During the pre-processing phase, the information is cleaned. This warrants the removal of “outliers”, if appropriate; choosing approaches for handling missing data fields; accounting for time sequence information, and applicable normalization of data.
Transformation

Within the transformation phase attempts to reduce the variety of data elements can be assessed while preserving the quality of the info. During this stage, information is organized, changed in one type to some other (i.e. changing nominal to numeric) and new or “derived” attributes are defined.
Data mining

Now the info is subjected to one or several data-mining methods such as regression, group, or clustering. The information mining part of KDD usually requires repeated iterative application of particular data mining methods. Different data-mining techniques or models can be used depending on the expected outcome.
Evaluation

The final step is documentation and interpretation of the outcomes from the previous steps. Steps during this period might consist of returning to a previous step up the KDD approach to help refine the acquired knowledge, or converting the knowledge in to a form clear for the user.In this stage the extracted data patterns are visualized for further reviews.
Conclusion

Data mining is a very crucial step of the KDD process.

For further reading aboud KDD and data mining ,please check this link.

Source: http://nocodewebscraping.com/difference-data-mining-kdd/

Wednesday, 3 August 2016

Three Common Methods For Web Data Extraction

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a database.

Source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Friday, 29 July 2016

Tips for scraping business directories

Tips for scraping business directories

Are you looking to scrape business directories to generate leads?

Here are a few tips for scraping business directories.

Web scraping is not rocket science. But there are good and bad and worst ways of doing it.

Generating sales qualified leads is always a headache. The old school ways are to buy a list from sites like Data.com. But they are quite expensive.

Scraping business directories can help generate sales qualified leads. The following tips can help you scrape data from business directories efficiently.

1) Choose a good framework to write the web scrapers. This can help save a lot of time and trouble. Python Scrapy is our favourite, but there are other non-pythonic frameworks too.

2) The business directories might be having anti-scraping mechanisms. You have to use IP rotating services to do the scrape. Using IP rotating services, crawl with multiple changing IP addresses which can cover your tracks.

3) Some sites really don’t want you to scrape and they will block the bot. In these cases, you may need to disguise your web scraper as a human being. Browser automation tools like selenium can help you do this.

4) Web sites will update their data quite often. The scraper bot should be able to update the data according to the changes. This is a hard task and you need professional services to do that.

One of the easiest ways to generate leads is to scrape from business directories and use enrich them. We made Leadintel for lead research and enrichment.

Source: http://blog.datahut.co/tips-for-scraping-business-directories/

Monday, 11 July 2016

Web Scraping Best Practices

Extracting data from the World Wide Web has several challenges as more webmasters are working day and night to lower cases of scraping and crawling of their data in order to survive in the competitive world. There are various other problems you may face when web scraping and most of them can be avoided by adapting and implementing certain web scraping best practices as discussed in this article.

Have knowledge of the scraping tools

Acquiring adequate knowledge of hurdles that may be encountered during web scraping, you will be able to have a smooth web scraping experience and be on the safe side of the law. Conduct a thorough research on the types of tools you will use for scraping and crawling. Firsthand knowledge on these tools will help you find the data you need without being blocked.

Proper proxy software that acts as the middle party works well when you know how to work around HTTP and HTML protocols. Use tools that can change crawling patterns, URLs and data retrieved even when you are crawling on one domain. This will help you abide to the rules and regulations that come with web scraping activities and escaping any legal issues.

Conduct your scraping activities during off-peak hours

You may opt to extract data during times that less people have access for instance over the weekends, during late night hours, public holidays among others. Visiting a website on several instances to retrieve the same type of data is a waste of bandwidth. It is always advisable to download the entire site content to your computer and thereafter you can access it whenever need arises.

Hide your scrapping activities

There is a thin line between ethical and unethical crawling hence you should completely evade being on the top user list of a particular website. Cover up your track as best as you can by making use of proxy IPs to avoid any legal problems. You may also use multiple IP addresses or VPN services to conceal your scrapping activities and lower chances of landing on a website’s blacklist.

Website owners today are very protective of their data and any other information existing under their unique url. Be keen when going through the terms and conditions indicated by websites as they may consider crawling as an infringement of their privacy. Simple etiquette goes a long way. Your web scraping efforts will be fruitful if the site owner supports the idea of sharing data.

Keep record of your activities

Web scraping involves large amount of data.Due to this you may not always remember each and every piece of information you have acquired, gathering statistics will help you monitor your activities.

Load data in phases

Web scraping demands a lot of patience from you when using the crawlers to get needed information. Take the process in a slow manner by loading data one piece at a time. Several parallel request to the same domain can crush the entire site or retrace the scrapping attempts back to your local machine.

Loading data small bits will save you the hustle of scrapping afresh in case that your activity has been interrupted because you will have already stored part of the data required. You can reduce the loading data on an individual domain through various techniques such as caching pages that you have scrapped to escape redundancy occurrences. Use auto throttling mechanisms to increase the amount of traffic to the website and pause for breaks between requests to prevent getting banned.

Conclusion

Through these few mentioned web scraping best practices you will be able to work around website and gather the data required as per clients’ request without major hurdles along the way. The ultimate goal of every web scraper is to be able to access vital information and at the same time remain on the good side of the law.

Source URl : http://nocodewebscraping.com/web-scraping-best-practices/

Saturday, 9 July 2016

Web Data Scraping: Practical Uses

Whether in the form of media, text or data in diverse other formats—the internet serves to be a huge storehouse of the world’s information. While browsing for commercial or business needs alike, users are exposed to numerous web pages that contain data in just about every form. Even though access to such data is extremely critical for garnering success in the contemporary world, unfortunately most of it is not open. More often than not, business websites restrict the accessibility options to such data and do not allow visitors to save or display them for reuse on their local storage devices, or onto their own websites.  This is where web data extraction tools come in handy.

Read on for a closer look into some of the common areas of data scraping usage.

• Gathering of data from diverse sources for analysis: In case a business necessitates the collection and analysis of data specific to certain categories from multiple websites, then it helps refer to web data integration experts or those related to the field of data scraping linked with categories like industrial equipment, real estate, automobiles, marketing, business contacts, electronic gadgets and so forth.

• Collection of data in different formats: Different websites are known to publish information and structured data in different formats. So, it may not be possible for organizations to see all the required data a one place, at any given time. Data scrapers allow the extraction of information spanning across multiple pages under various sections, on to a single database or spreadsheet.  This makes it easy for users to analyze (or visualize) the data.

• Helps Research: Data is an important and integral part of all kinds of research – marketing, academic or scientific. A data scraper helps in gathering structured data with ease.

• Market analysis for businesses: Companies that cater to products or services connected to specific domains require comprehensive data of products and services that are of similar kind, and which have a tendency of appearing in the market on a daily basis.

Web scraping software solutions from reputed companies are successful in keeping a constant watch on this kind of data and allow users to get access required information from diverse sources – all at the click of a button.
Go for data extraction to take your business to the next levels of success – you will not be disappointed.

Source URL : http://www.3idatascraping.com/web-data-scraping-practical-uses.php

Thursday, 7 July 2016

Web Scraping Services : Making Modern File Formats More Accessible

Data scraping is the process of automatically sorting through information contained on the internet inside html, PDF or other documents and collecting relevant information to into databases and spreadsheets for later retrieval. On most websites, the text is easily and accessibly written in the source code but an increasing number of businesses are using Adobe PDF format (Portable Document Format: A format which can be viewed by the free Adobe Acrobat software on almost any operating system. See below for a link.). The advantage of PDF format is that the document looks exactly the same no matter which computer you view it from making it ideal for business forms, specification sheets, etc.; the disadvantage is that the text is converted into an image from which you often cannot easily copy and paste. PDF Scraping is the process of data scraping information contained in PDF files. To PDF scrape a PDF document, you must employ a more diverse set of tools.

There are two main types of PDF files: those built from a text file and those built from an image (likely scanned in). Adobe's own software is capable of PDF scraping from text-based PDF files but special tools are needed for PDF scraping text from image-based PDF files. The primary tool for PDF scraping is the OCR program. OCR, or Optical Character Recognition, programs scan a document for small pictures that they can separate into letters. These pictures are then compared to actual letters and if matches are found, the letters are copied into a file. OCR programs can perform PDF scraping of image-based PDF files quite accurately but they are not perfect.

Once the OCR program or Adobe program has finished PDF scraping a document, you can search through the data to find the parts you are most interested in. This information can then be stored into your favorite database or spreadsheet program. Some PDF scraping programs can sort the data into databases and/or spreadsheets automatically making your job that much easier.

Quite often you will not find a PDF scraping program that will obtain exactly the data you want without customization. Surprisingly a search on Google only turned up one business, that will create a customized PDF scraping utility for your project. A handful of off the shelf utilities claim to be customizable, but seem to require a bit of programming knowledge and time commitment to use effectively. Obtaining the data yourself with one of these tools may be possible but will likely prove quite tedious and time consuming. It may be advisable to contract a company that specializes in PDF scraping to do it for you quickly and professionally.

Let's explore some real world examples of the uses of PDF scraping technology. A group at Cornell University wanted to improve a database of technical documents in PDF format by taking the old PDF file where the links and references were just images of text and changing the links and references into working clickable links thus making the database easy to navigate and cross-reference. They employed a PDF scraping utility to deconstruct the PDF files and figure out where the links were. They then could create a simple script to re-create the PDF files with working links replacing the old text image.

A computer hardware vendor wanted to display specifications data for his hardware on his website. He hired a company to perform PDF scraping of the hardware documentation on the manufacturers' website and save the PDF scraped data into a database he could use to update his webpage automatically.

PDF Scraping is just collecting information that is available on the public internet. PDF Scraping does not violate copyright laws.

PDF Scraping is a great new technology that can significantly reduce your workload if it involves retrieving information from PDF files. Applications exist that can help you with smaller, easier PDF Scraping projects but companies exist that will create custom applications for larger or more intricate PDF Scraping jobs.

Source URL :  http://yellowpagesdatascraping.blogspot.in/2015/06/web-scraping-services-making-modern.html

Saturday, 18 June 2016

Increasing Accessibility by Scraping Information From PDF

You may have heard about data scraping which is a method that is being used by computer programs in extracting data from an output that comes from another program. To put it simply, this is a process which involves the automatic sorting of information that can be found on different resources including the internet which is inside an html file, PDF or any other documents. In addition to that, there is the collection of pertinent information. These pieces of information will be contained into the databases or spreadsheets so that the users can retrieve them later.

Most of the websites today have text that can be accessed and written easily in the source code. However, there are now other businesses nowadays that choose to make use of Adobe PDF files or Portable Document Format. This is a type of file that can be viewed by simply using the free software known as the Adobe Acrobat. Almost any operating system supports the said software. There are many advantages when you choose to utilize PDF files. Among them is that the document that you have looks exactly the same even if you put it in another computer so that you can view it. Therefore, this makes it ideal for business documents or even specification sheets. Of course there are disadvantages as well. One of which is that the text that is contained in the file is converted into an image. In this case, it is often that you may have problems with this when it comes to the copying and pasting.

This is why there are some that start scraping information from PDF. This is often called PDF scraping in which this is the process that is just like data scraping only that you will be getting information that is contained in your PDF files. In order for you to begin scraping information from PDF, you must choose and exploit a tool that is specifically designed for this process. However, you will find that it is not easy to locate the right tool that will enable you to perform PDF scraping effectively. This is because most of the tools today have problems in obtaining exactly the same data that you want without personalizing them.

Nevertheless, if you search well enough, you will be able to encounter the program that you are looking for. There is no need for you to have programming language knowledge in order for you to use them. You can easily specify your own preferences and the software will do the rest of the work for you. There are also companies out there that you can contact and they will perform the task since they have the right tools that they can use. If you choose to do things manually, you will find that this is indeed tedious and complicated whereas if you compare this to having professionals do the job for you, they will be able to finish it in no time at all. Scraping information from PDF is a process where you collect the information that can be found on the internet and this does not infringe copyright laws.

 Source  URL : http://ezinearticles.com/?Increasing-Accessibility-by-Scraping-Information-From-PDF&id=4593863

Wednesday, 11 May 2016

Web Scraping to Create Open Data

Open data is the idea that some data should be freely available to everyone to use and republish as they wish, without restrictions from
copyright, patents or other mechanisms of control.

My first experience with open data was in the year 2010. I wanted to create a better app for Bicing, the local bike sharing system in
Barcelona. Their website was a nightmare to use and I was tired of needing to walk to each station, trying to guess which ones had bicycles.
There was no app for Android, other than a couple of unofficial attempts that didn’t work at all.

I began as most would; I searched the internet and found a library named python-bicing that was somehow able to retrieve station and
bike information. This was my first time using Python and, after some investigation, I learned what the code was doing: accessing the
official website, parsing the JavaScript that generated their buggy map and giving back a nice chunk of Python objects that represented
bike share stations.

This I learned was called web scraping. It was like I had figured out a magic trick that would allow me to always be able to access the data I
needed without having to rely on faulty websites.

The rise of OpenBicing and CityBikes

Shortly after, I launched OpenBicing, an Android app for the local bike sharing system in Barcelona, together with a backend that used
python-bicing. I also shared a public API that provided this information so that nobody else had to do the dirty work ever again.

Since other cities were having the same problem, we expanded the scope of the project worldwide and renamed it CityBikes. That was 6
years ago.

To date, CityBikes is the most comprehensive and widely used open API for bike sharing information, with support for over 400 cities
worldwide. Our API processes around 10 requests per second and we scrape each of the 418 feeds about every three minutes. Making our
core library available for anyone to contribute has been crucial in maintaining and adding coverage for all of the supported systems.

The open data fallacy

We are usually regarded as “an open data project” even though less than 10% of our feeds come from properly licensed, documented and
machine-readable feeds. The remaining 90% is composed of 188 feeds that are machine-readable, but not licensed nor documented and
230 that are entirely maintained by scraping HTML pages.

North American BikeShare Association) recently published GBFS (General Bikeshare Feed Specification). This is clearly a step in the right
direction, but I can’t help but look at the almost 60% of services we currently support through scraping and wonder how long it will take the
remaining organizations to release their information, if ever. This is even more the case considering these numbers aren’t even taking into
account worldwide coverage.

Over the last few years there has been a progression by transportation companies and city councils toward providing their information as
“open data”. Directive 2003/98/EC encourages EU member states to release information regarding public services.

Yet, in most cases, there’s little action in enforcing Public Private Partnerships (PPP) to release their public information under a non-
restrictive license or even to transfer ownership of the data to city councils to be included in their open data portals.

Even with the increasing number of companies and institutions interested in participating in open data, by no means should we consider
open data a reality or something to be taken for granted. I firmly believe in the future and benefits of open data, I have seen them
happening all around CityBikes, but as technologists we need to stress the fact that the data is not out there yet.

The benefits of open data

When I started this project, I sought to make a difference in Barcelona. Now you can find tons of bike sharing apps that use our API on all
major platforms. It doesn’t matter that these are not our own apps. They are solving the same problem we were trying to fix, so their
success is our success.

Besides popular apps like Moovit or CityMapper, there are many neat projects out there, some of which are published under free software
licenses. Ideally, a city council could create a customization of any of these apps for their own use.

Most official applications for bike sharing systems have terrible ratings. The core business of transportation companies is running a service,

so they have no real motivation to create an engaging UI or innovate further. In some cases, the city council does not even own the rights to
the data, being completely at the mercy of the company providing the transportation service.

Open data over apps

When providing public services, city councils and companies often get lost in what they should offer as an aid to the service. They focus on
a nice map or a flashy application, rather than providing the data behind these service aids. Maps, apps, and websites have a limited focus
and usually serve a single purpose. On the other hand, data is malleable and the purest form of representation. While you can’t create
something new from looking and playing with a static map (except, of course, if you scrape it), data can be used to create countless
different iterations. It can even provide a bridge that will allow anyone to participate, improve and build on top of these public services.

Wrap Up

At this point, you might wonder why I care so much about bike sharing. To me it’s not about bike sharing anymore. CityBikes is just too
good of an open data metaphor, a simulation in which public information is freely accessible to everyone. It shows the benefits of open
data and the deficiencies that arise from the lack thereof.

We shouldn’t have to create open data by scraping websites. This information should be already available, easily accessed and provided in
a machine-readable format from the original providers, be they city councils or transportation companies. However, until there’s another
option, we’ll always have scraping.


Source : https://blog.scrapinghub.com/2016/03/30/web-scraping-to-create-open-data/