eBay Product Scraping, Manta Data Scraping, Website Screen Scraping, Website Screen Scraping, Website Scraper, Scraping Data from Websites, Website Information Scraping, Web Scraping Services, Scraping Data from Websites, Website Information Scraping

Wednesday, 11 May 2016

Web Scraping to Create Open Data

Open data is the idea that some data should be freely available to everyone to use and republish as they wish, without restrictions from
copyright, patents or other mechanisms of control.

My first experience with open data was in the year 2010. I wanted to create a better app for Bicing, the local bike sharing system in
Barcelona. Their website was a nightmare to use and I was tired of needing to walk to each station, trying to guess which ones had bicycles.
There was no app for Android, other than a couple of unofficial attempts that didn’t work at all.

I began as most would; I searched the internet and found a library named python-bicing that was somehow able to retrieve station and
bike information. This was my first time using Python and, after some investigation, I learned what the code was doing: accessing the
official website, parsing the JavaScript that generated their buggy map and giving back a nice chunk of Python objects that represented
bike share stations.

This I learned was called web scraping. It was like I had figured out a magic trick that would allow me to always be able to access the data I
needed without having to rely on faulty websites.

The rise of OpenBicing and CityBikes

Shortly after, I launched OpenBicing, an Android app for the local bike sharing system in Barcelona, together with a backend that used
python-bicing. I also shared a public API that provided this information so that nobody else had to do the dirty work ever again.

Since other cities were having the same problem, we expanded the scope of the project worldwide and renamed it CityBikes. That was 6
years ago.

To date, CityBikes is the most comprehensive and widely used open API for bike sharing information, with support for over 400 cities
worldwide. Our API processes around 10 requests per second and we scrape each of the 418 feeds about every three minutes. Making our
core library available for anyone to contribute has been crucial in maintaining and adding coverage for all of the supported systems.

The open data fallacy

We are usually regarded as “an open data project” even though less than 10% of our feeds come from properly licensed, documented and
machine-readable feeds. The remaining 90% is composed of 188 feeds that are machine-readable, but not licensed nor documented and
230 that are entirely maintained by scraping HTML pages.

North American BikeShare Association) recently published GBFS (General Bikeshare Feed Specification). This is clearly a step in the right
direction, but I can’t help but look at the almost 60% of services we currently support through scraping and wonder how long it will take the
remaining organizations to release their information, if ever. This is even more the case considering these numbers aren’t even taking into
account worldwide coverage.

Over the last few years there has been a progression by transportation companies and city councils toward providing their information as
“open data”. Directive 2003/98/EC encourages EU member states to release information regarding public services.

Yet, in most cases, there’s little action in enforcing Public Private Partnerships (PPP) to release their public information under a non-
restrictive license or even to transfer ownership of the data to city councils to be included in their open data portals.

Even with the increasing number of companies and institutions interested in participating in open data, by no means should we consider
open data a reality or something to be taken for granted. I firmly believe in the future and benefits of open data, I have seen them
happening all around CityBikes, but as technologists we need to stress the fact that the data is not out there yet.

The benefits of open data

When I started this project, I sought to make a difference in Barcelona. Now you can find tons of bike sharing apps that use our API on all
major platforms. It doesn’t matter that these are not our own apps. They are solving the same problem we were trying to fix, so their
success is our success.

Besides popular apps like Moovit or CityMapper, there are many neat projects out there, some of which are published under free software
licenses. Ideally, a city council could create a customization of any of these apps for their own use.

Most official applications for bike sharing systems have terrible ratings. The core business of transportation companies is running a service,

so they have no real motivation to create an engaging UI or innovate further. In some cases, the city council does not even own the rights to
the data, being completely at the mercy of the company providing the transportation service.

Open data over apps

When providing public services, city councils and companies often get lost in what they should offer as an aid to the service. They focus on
a nice map or a flashy application, rather than providing the data behind these service aids. Maps, apps, and websites have a limited focus
and usually serve a single purpose. On the other hand, data is malleable and the purest form of representation. While you can’t create
something new from looking and playing with a static map (except, of course, if you scrape it), data can be used to create countless
different iterations. It can even provide a bridge that will allow anyone to participate, improve and build on top of these public services.

Wrap Up

At this point, you might wonder why I care so much about bike sharing. To me it’s not about bike sharing anymore. CityBikes is just too
good of an open data metaphor, a simulation in which public information is freely accessible to everyone. It shows the benefits of open
data and the deficiencies that arise from the lack thereof.

We shouldn’t have to create open data by scraping websites. This information should be already available, easily accessed and provided in
a machine-readable format from the original providers, be they city councils or transportation companies. However, until there’s another
option, we’ll always have scraping.


Source : https://blog.scrapinghub.com/2016/03/30/web-scraping-to-create-open-data/




Exploring Web Data Extraction And Its Different Techniques

Web scraping or web data extraction is a distinctive process based on computer software to extract information from different websites. Mostly business organizations are dependent on the web resources for collecting crucial information relating to decision making. With the analysis of such data, they can identify the existing trends of market, details, prices, and product specification. Looking at the time consuming process of manual data extraction, the prominence of data extraction techniques increases.

Different data scraping techniques

Several data extraction techniques are available for the businesses to extract useful information for successful operations. Some of them may include:

    Logical extraction: It comprises logical data extraction of complete source system as well as incremental.
    Physical extraction: This technique involves two different mechanisms for web scrapping that include both online as well as offline.
    HTTP programming: You can also extract data from both dynamic and static websites by implying the technique of socket programming. It allows you to post HTTP requests on the remote web servers.
    Web scraping software: Several software tools are available in the market that serves your individual needs of extracting data with ease. It automatically attempts to recognize the structure of data for a page and extracts the content for further analysis.
    Web scrapping tools: Besides the availability of reliable software, numerous user-friendly web scrapping tools are also helpful in simplifying the entire web scraping process.

Hire a website scrapper

Hiring a suitable website scraper that offers website data extraction services for all your business requirements is an ideal way amongst all other techniques. It provides you filtered and reliable data according to your need for analysis. Some of the major advantages of using website scrapping services may include:

    Automation of data.
    It can retrieve web pages of both static as well as dynamic websites.
    It is also capable of transforming the content into useful information.
    Provides reliable and accurate data.
    It also recognizes several semantic annotations.

Scraping service versus tools

Web scraping services gain more privilege than other tools and software. The basic reason behind this preference is that the service providers are comparatively cheaper than the tools. In fact, they maintain better accuracy and reliability of data.

Summary: It is advisable to look out for suitable web data extraction services instead of any tools or software. This helps in acquiring customized and structured data for your business in legal manner.


 Source : http://www.web-parsing.com/blog/exploring-web-data-extraction-and-its-different-techniques/